

 Excel Translator™

 User Guide

 Copyright © 2006. Ultimate Risk Solutions

Excel Translator™ User’s Guide

Contents

1 ABOUT EXCEL TRANSLATOR™... 1
1.1. Benefits ... 1

2 SYSTEM REQUIREMENTS... 4
Minimum Configuration... 4

3 INSTALLATION ... 5

4 EXCEL TRANSLATOR™ CONCEPTS ... 6

5 USING EXCEL TRANSLATOR ™... 9
5.1 Defining Input and Output Variables... 9
5.2 Using VBA Macros in Excel Models .. 9
5.3 Using External Add-Ins in Excel Models .. 10
5.4 Translating Excel Spreadsheets ... 11
5.5 Using Translated DLL in a VBA Macro – Examples and Sample Files 11
5.6 Using Translated DLL in C++ Program – Examples and Sample Files................ 14
5.7 Using External DLL Function Calls in Spreadsheet Models................................. 15
5.8 Testing Translated DLL... 16

6 URS MODEL BUILDER AND RESULT VIEWER .. 19

7 USING URS STATISTICAL DISTRIBUTION AND MATH LIBRARY............ 21

8. STATISTICAL DISTRIBUTIONS OF EXCEL TRANSLATOR™...................... 28
8.1 Continuous Distributions ... 28
8.2 Discrete Distributions .. 36

Excel Translator™ User Guide About Excel Translator™ Page 1

1 About Excel Translator™
When used in Microsoft Windows environment, Excel Translator™ compiles Excel
spreadsheet files into Windows machine code Dynamic Link Libraries (DLLs). The
translated DLL preserves the entire logic of the calculations of an Excel spreadsheet, but
executes (calculates) significantly faster than the original Excel spreadsheet.

Such DLLs can be used by other programs for fast dynamic processing. Such programs can
be written in any programming language utilizing the DLL standard, such as Microsoft
Visual Basic or C, C++, C#, or other.

1.1. Benefits

The technology behind the Excel Translator™ is pending US patent and offers many
important benefits:

1) Fast execution: The fast execution speed of the model converted with the Excel
Translator™ into machine code is just one among many important advantages
offered by this product.

2) Saving time and money: Instead of exerting a significant effort in programming and
software engineering, the owner of Excel Translator™ software translates any
Excel-based model, with all of its VBA and associated DLL’s, at a click of a mouse
button. By investing into Excel Translator™, its users save not only the trouble and
time of programming, but the associated expenses of program development – often
quite significant.

3) Hiding the proprietary algorithms from prying eyes of competitors: Thus produced
machine code conveniently hides the inner workings of the model, protecting its
proprietary nature – an important feature in many applications in finance,
engineering and science.

4) Preserving integrity of the model: model developers do not need to worry that
users would inadvertently modify its algorithm or “break” the model while entering
data.

5) Expanded Math Library: In addition, Excel Translator offers its unique Statistical
Distribution and Math Library, which expands on Excel’s rich development
environment and enables creation of sophisticated financial, statistical and other
models.

6) Model Builder: Model Builder is a component which facilitates building
sophisticated models out of previously created DLLs, using them effectively as
building blocks to create complex models, while using a light, elegant architecture.
Model Builder is a component of the full developer license of Excel Translator™
or it can be can be purchased separately.

Excel Translator™ User Guide About Excel Translator™ Page 2

A typical application of the Excel Translator™ is a complex Excel model that needs to be
recalculated many times, perhaps tens of thousands times, each time with a different set of
input parameters. For each set of input parameters, the entire model is recalculated to
produce corresponding output parameters. The combined effect of a translated DLL
running much faster than its Excel prototype, plus a large number of required iterations,
may result in a dramatically improved speed of model’s calculation.

Excel Translator™ produces code which delivers the same numeric results as the original
Excel model, only orders of magnitude faster. Usually, the more complicated the Excel
model, the more time it takes to calculate, the more dramatic is the increase in speed
demonstrated by the machine code produced with Excel Translator.

There are many reasons why organizations and institutions convert the original or the
prototype Excel model into a program. Such conversion is generally a tedious, lengthy and
expensive programming project. Excel Translator ™ achieves the same results in seconds!

Without Excel Translator, modelers usually employ either or both of the following two
options:

1. They write specialized software for their models in various programming
languages, such as C/C++ or Visual Basic. This option offers an advantage in
calculation speed, but its substantial drawbacks are:

 Rigidity of the program code,
 High expense of its creation and maintenance,
 Lengthy, tedious and laborious reprogramming effort every time the

structure of the model changes.

2. They create Excel spreadsheets to process the calculations of the models. The

advantage of this approach is the powerful and rich modeling environment
offered by Microsoft Excel with commercially available and proprietary
Plug-Ins, and the flexibility and ease of changing the model structure.
However, the speed of calculations is unacceptably slow, especially for
complex models, and protection of the proprietary logic is weak.

Excel Translator ™ from Ultimate Risk Solutions, offers the best of both of these two
approaches. It combines the high speed of execution offered only by executable programs,
as well as the flexibility and ease-of-development offered by powerful Excel environment.
In addition, Excel Translator™ extends Excel’s capabilities by offering its users its own
rich set of statistical distribution functions which far expand the capabilities of Microsoft
Excel in this area (see the “Statistical Distributions in Excel Translator™” section of this
manual for more information).

Excel Translator™ User Guide About Excel Translator™ Page 3

Excel Translator ™ comes with Model Builder, an auxiliary application that conveniently
assembles and runs previously translated DLL components. Thus, it facilitates creation of
complex models, built out of previously created or simpler ones, allowing you to use
models as building blocks for other models.

Excel Translator ™ is an embodiment of the concept of “programming without
programmers.” Instead of using a tiger team of programming experts working hard
(sometimes for weeks or months, or even longer) to convert an Excel model into machine
code, with Excel Translator ™ you can achieve the same results, instantly.

Excel Translator™ User Guide Excel Translator™ Concepts Page 4

2 System Requirements
Excel Translator is capable of compiling very large Excel spreadsheets. Naturally, it
performs better on faster hardware, but it is capable of running on a relatively small system.

Minimum Configuration

Processor: 300 megahertz Pentium
RAM: 128 megabytes
Operating System: Windows (95/98/2000/NT/XP)
Available disk storage: 20 megabytes
CD-ROM, CD-RW or CD/DVD drive

Excel Translator™ User Guide Excel Translator™ Concepts Page 5

3 Installation
To install Excel Translator™, insert the Excel Translator CD into the CD drive, or
download the installation kit from www.ExcelTranslator.com into a folder on your
computer, for example, C:\ET.

If the Setup window does not appear automatically, use the following steps to start it:

• Left-click on the Start menu.
• Choose the Run… item.
• In the Open: field, type in the drive letter of the CD drive, colon, and the
 name of Excel Translator installation file, or specify the path to the
installation file, for example:

D:\ExcelTranslator-1-6-0(36).exe or
C:\ET\ExcelTranslator-1-6-0(36).exe, if you downloaded Excel Translator™
distribution into C:\ET.

• Click OK and follow the instructions

Note that in order to produce Microsoft Windows DLLs, which is Excel Translator’s
standard functionality, Excel Translator™ must use a C++ compiler. Excel Translator™

uses a freely distributed Microsoft’s Visual C++ compiler that can be downloaded from Microsoft
website. Your computer should have a fast Internet connection in order to download and install
Microsoft C++ compiler. You can also install a full function Excel Translator™ on a computer
with no Internet connection, in which case you’d have to install a C++ compiler using a CD, flash
disk or other distribution media.

Excel Translator™ installer wizard program helps you download and install a C++ compiler from
Microsoft.

During the installation of Excel Translator™, the installation program asks if you wish to install a
free Microsoft C++ compiler, and if you answer YES, the installation proceeds to the appropriate
Micrsoft.com download page and helps you install the latest version of Microsoft Visual C++
Express. The current release of Excel Translator™ requires Visual C++ 2005 Express (or higher)
version. It also supports an older Visual C++ 2003 compiler. Note that Microsoft’s installation
wizard and website may use names, such as “Visual C++ Express Edition,” “Visual C++ Express,”
and “Visual C++ 2005 Express” interchangeably. They all refer to the same freely distributed C++
compiler from Microsoft.

If you need to use Excel Translator™ to generate C++ code in order, for example, to port the code
to a different hardware or software platform, you may choose a different compiler suitable for that
task.

http://www.exceltranslator.com/

Excel Translator™ User Guide Excel Translator™ Concepts Page 6

4 Excel Translator™ Concepts
In order to use Excel Translator™, certain cells in the Excel spreadsheet containing your
model need to be identified as “Input Cells” or “Input Variables”. Certain other cells need
to be defined as “Output Cells” or “Output Variables”. All remaining cells become “Logic
Cells” or “Calculation Cells”, they contain values or Excel formulas. There are no
restrictions on the number of Logic Cells or sheets that you can utilize in your Excel model
(other than those restrictions imposed by Microsoft Excel.)

You can use the user-defined functions calling VBA macros in your logic cells. You can
also use the functions from external add-ins, as well as from external DLLs declared in
VBA modules.

The input cells are the “entry points” and the output cells are the “exit points” in your
model as shown on Fig. 1 below.

Fig. 1. Input / Output Cells and Logic Cells

After you define the input and output variables, you are ready to translate.
Excel Translator™ will compile your Excel spreadsheet into a DLL. Thus produced DLL
will perform all the calculations defined in your Excel model and with the same numeric
results, only now the calculations will be performed by the fast executing machine code.

The spreadsheet’s input cells become Input Parameters in the DLL and the output cells
become Output Parameters. The DLL is a single function that:

Excel Translator™ User Guide Excel Translator™ Concepts Page 7

• Takes the values of Input Parameters
• Runs all calculations specified in your Excel model
• Produces the values of Output Parameters

This function can be called in a fast repeating mode, for example 100,000 times (iterations)
with different values of input parameters. Each time it will return a different set of
calculated output values.

Input values can be produced by any external application written in VBA, C++, or any
programming language which can utilize dynamic link libraries (DLLs). Model Builder
supplied with Excel Translator™ is one of such external applications. Model Builder saves
you the trouble of having to program an application whose function is to feed input
parameters into the model.

Output values can be accumulated in the same external application to be subsequently
analyzed. The DLL calculations execute much faster than the original Excel model. The
speed of the program produced by Excel Translator ™ rivals that produced by expert
programmers, making the time and expense of programming and the corresponding
software development cycle unnecessary and obsolete.

Fig. 2. Translated Model (DLL) and Feeding / Collection of Input / Output Parameters

NOTE: The original Excel model can contain any number of Excel
formulas, user-defined functions calling VBA macros, functions from
external Add-Ins, such as Analysis Toolpack, and/or functions from

Excel Translator™ User Guide Excel Translator™ Concepts Page 8

additional external DLLs, which are declared in VBA modules and used in
the Excel model.

Excel Translator™ User Guide Using Excel Translator™ Page 9

5 Using Excel Translator ™

5.1 Defining Input and Output Variables

Open Excel spreadsheet containing your model. From Excel’s main menu, select

Tools…Excel Translator…Define Input/Output.

On the first Wizard page, Define Input Variables, click the Add button to add each input
variable. Then on the Add Input Variable dialog, specify the name and select the range of
cells for that variable. You can subsequently edit or remove input variables. Click Next
when you finished editing your specifications for input variables. On the subsequent
Wizard page, Define Output Variables, create output variables in a similar way. Click Finish
when done with defining output variables.

NOTE: Excel Translator creates a VBA module called
URS_VariableDefinition in your spreadsheet that contains all the information
about input and output variables. Do not edit this VBA module !

Also note that each input and output variable can be defined either as a single cell or as a
range of cells (array or matrix).

5.2 Using VBA Macros in Excel Models

Generally, you can write your own user-defined functions and subroutines (macros) in
Excel VBA as you normally would. Excel Translator ™ allows you to use VBA macros in
your model. These functions and subroutines become part of the translated DLL after your
Excel file is compiled by Excel Translator™.

Excel Translator’s output is a machine code, which quite naturally cannot deal with Excel
objects or program code which communicates with Excel. Indeed, the translated DLL is not
using Excel, so such code in it would be meaningless. While there are virtually no
limitations on how a model is created, please keep in mind the following rules:

• The lines of VBA code inside user-defined functions and/or subroutines that write
data back to Excel will be ignored by Excel Translator™. Avoid writing such code
or make sure that such code does not, in any way, affect your end result.

• Excel Translator ™ will ignore the lines of VBA code that use Excel objects, their

methods and/or properties, therefore such code should also be avoided. The
exceptions to this rule are:

Excel Translator™ User Guide Using Excel Translator™ Page 10

 RANGE object when used as an argument of a function. For example, the
following function will be valid for translation:

Function MyFunction(rMyInputRange As Range) As Double
 Dim i As Integer, dValue As Double

 For i = 1 To rMyInputRange.Count

 dValue = rMyInputRange(i)
 '
 ' other programming code
 '
 Next i
End Function

 RANGE object when used to read data from Excel’s cells. For example, the
following function will be translated:

Function MyFunction() As Double
 Dim i As Integer, adValues(10) As Double

 For i = 1 To 10

 adValues(i) = Sheets("Sheet1").Range("A1").Offset(i, 0).Value
 '
 ' other programming code
 '
 Next i
End Function

5.3 Using External Add-Ins in Excel Models

The functions from the external add-ins implemented as XLL files and registered in Excel,
may be used in your Excel models. Excel Translator™ compiles (translates) such functions
requiring no extra effort on your part.

Likewise, Excel Translator™ understands functions from COM Add-Ins (sometimes called
Automation Add-Ins) translating them without any extra effort on your part.

Excel Translator™ User Guide Using Excel Translator™ Page 11

NOTE: Avoid using external add-in’s functions that make no sense in
the context of a compiled model: functions that call methods or properties of
Excel objects. Excel Translator™ will ignore such calls to Excel objects and
translating such functions may lead to an error.

5.4 Translating Excel Spreadsheets

You can translate an Excel file in three different ways:

• By selecting Tools…Excel Translator…Translate item from Excel’s main
menu

• By selecting Excel Translator item from Start→ Programs→ Excel Translator
group and specifying the Excel file(s) you want to translate

• By right clicking on the Excel file in Windows Explorer and selecting the
Translate menu item.

NOTE: The Excel Translator item will appear under Tools menu in
Excel after you install Excel Translator™. If the Excel Translator item is not
there, select Tools…Add-Ins and make sure that Excel Translator is on the
list of add-ins and that it’s checked. If Excel Translator is not on the list of
add-ins, click on the Browse button and find the ExcelTranslator.xla file in
“C:\Program Files\Ultimate Risk Solutions\Excel Translator\AddIn“ folder
(note that you may have chosen a different folder during the installation).

5.5 Using Translated DLL in a VBA Macro – Examples and Sample Files

The sample files for using translated DLLs from VBA code are installed into C:\Program
Files\Ultimate Risk Solutions\Excel Translator\Samples\VBA folder. These files represent
examples, which are intentionally simplified to be instructional while demonstrating how to
use the product effectively. The real models you create can be as complex as you need
them to be, but the process of defining input/output, translating the file, and running
translated DLL from external application will still be the same, as demonstrated by the
examples in the sample files.

The SimpleModel.xls file contains a simple Excel model that calculates the volume and the
area of a parallelepiped. There is one input variable there, which is a (1 x 3) range where
the elements of the vector are the lengths of the sides of a parallelepiped, and two output
variables – volume and area, both single cells.

Excel Translator™ User Guide Using Excel Translator™ Page 12

NOTE: The purpose of this example is to show how to define the
input and output variables in your Excel model, how to translate Excel
spreadsheet containing your model, and how to use translated DLL from
VBA code in another Excel file.

Select Tools…Excel Translator…Define Input/Output from Excel’s main menu to see how
the input and output variables are defined in that spreadsheet. Then translate
SimpleModel.xls by selecting Tools…Excel Translator…Translate. Excel Translator™
creates the following files as a result of translation:

• SimpleModel.dll - a dynamic link library containing all calculations
defined in the original Excel model;

• SimpleModel.utd - an auxiliary file used by the translated DLL;

• SimpleModel.Excel.test - an auxiliary file used during DLL testing.

NOTE: DLL, UTD and EXCEL.TEST files must always be kept in the
same folder.

The SimpleModelUser.xls file shows you how to use the DLL translated from
SimpleModel.xls. The SimpleModelUser.xls file has a VBA macro that calculates the values
of parallelepiped’s volume and area for different lengths of sides A, B, and C. You can
control the number of iterations by changing the values on the Data sheet in
SimpleModelUser.xls.

Look at the VBA code in SimpleModelUser.xls. Using translated DLL is easy. First, you
need to reference Excel Translator in the Microsoft Visual Basic environment. In order to
do that, select Tools…References from the main menu, click on the Browse button, and find
the ExcelTranslator.xla file in “C:\Program Files\Ultimate Risk Solutions\Excel
Translator\AddIn“ folder (note that you may have chosen a different folder during the
installation).

Secondly, at the beginning of your VBA code you need to create a DLL object by adding the
following line:

Set oDLL = URS_CreateObject("<drive:path\translated_dll_file_name>")

The DLL object has the following properties:

Excel Translator™ User Guide Using Excel Translator™ Page 13

InputVariables - a collection of Variable objects
OutputVariables - a collection of Variable objects

Both InputVariables and OutputVariables collections have the following methods:

Count - returns the number of variables

in the collection

Item(<Index>) or Item(“<Name>”) - returns specific Variable from the
collection by index or by name

NOTE: Item index in InputVariables and OutputVariables
collections is one-based (starts from 1).

Variable object has the following properties:

Name - read-only property
Value - read-write property that can contain a one- or two-dimensional

array or a single value

The DLL object also has the Calculate method that is called after the values of Input
Variables are set. The Calculate method recalculates the entire DLL and after that the
values of Output Variables can be retrieved.

SimpleModelUser.xls sets the values of Input Variables as follows (see CalculateOutput()
function):

adInputValues(1) = m_adValuesSideA(i)
adInputValues(2) = m_adValuesSideB(j)
adInputValues(3) = m_adValuesSideC(k)

oDLL.InputVariables("Sides").Value = adInputValues

Then the DLL is recalculated:

oDLL.Calculate

After that, the calculated values of Output Variables are retrieved from the DLL:

m_aOutputRows(nIteration).dVolume = oDLL.OutputVariables("Volume").Value
m_aOutputRows(nIteration).dArea = oDLL.OutputVariables("Area").Value

Excel Translator™ User Guide Using Excel Translator™ Page 14

In SimpleModelUser.xls, click Ctrl+R to run the VBA macro that creates different values of
input parameters, for each such set of values calls oDLL.Calculate to calculate the output
values and then writes the input and the output values into the cells on the Output sheet.

5.6 Using Translated DLL in C++ Program – Examples and Sample Files

The sample Visual C++ project can be found in C:\Program Files\Ultimate Risk
Solutions\URS Translator\Samples\C++\SimpleModelUser folder. The project name is
SimpleModel.dsw. It is a simple C++ application that does exactly what the above VBA
module does – calculates the volume and the area of a parallelepiped.

All code of your interest is located in OnOK() function of CSimpleModelDlg class. First, the
DLL should be loaded using the following command:

HMODULE hDLL = LoadLibrary(sDllFileName);

where sDllFileName is the full name of the translated DLL file, including drive and path.

Then the pointer, pModule, to a translated DLL object should be obtained using
GetTranslatedObject function, which is the function exportable from the translated
DLL:

typedef IURSTranslatedObject* (*PFN_GetTranslatedObject)();

PFN_GetTranslatedObject pfnGetTranslatedObject =
(PFN_GetTranslatedObject)GetProcAddress(hDLL, _T("GetTranslatedObject"));

.

IURSModule* pModule = dynamic_cast< IURSModule* >
((*pfnGetTranslatedObject)());

Note that IURSTranslatedObject and IURSModule classes are declared in the header files,
IURSTranslatedObject.h and URSModuleInterface.h. Both header files are included at
the beginning of CSimpleModelDlg.cpp. The headers are located in C:\Program
Files\Ultimate Risk Solutions\URS Translator\Include folder.

Then, in our example, we declare the input variables, mInput, that will be used to pass the
input to the DLL, and the output variable, mOutput, that will be used to retrieve the output
from the DLL.

IURSModule::TMatrix mInput, mOutput;

Typedef TMatrix is declared in URSModuleInterface.h as follows:

typedef vector< vector< double > > TMatrix;

Excel Translator™ User Guide Using Excel Translator™ Page 15

After that, we set the input variable(s):

pModule->SetInputValue(0, mInput);

recalculate DLL:

pModule->CalculateFull();

and retrieve the output:

pModule->GetOutputValue(0, mOutput);
dVolume = mOutput[0][0];

pModule->GetOutputValue(1, mOutput);
dArea = mOutput[0][0];

NOTE: Unlike VBA, all arrays in C++ are zero-based.

At the end, we need to free our DLL as follows:

FreeLibrary (hDLL);

Build and execute the application. From SimpleModelUser dialog select SimpleModel.dll,
enter an initial value, step, and the number of values for A, B, and C sides of parallelepiped
and click Run. The volume and area for each set of inputs will be calculated and shown in
the grid of the dialog.

5.7 Using External DLL Function Calls in Spreadsheet Models

Sometimes you may want to write your own functions in programming languages, such as
C or C++, place those functions in your own DLL, and use that DLL in your Excel
spreadsheet model. You may also want to utilize certain functions from existing DLLs
written by other people. Excel Translator™ understands such function calls to external
DLLs.

All you need to do is to declare those external DLL functions in the VBA module of your
Excel spreadsheet, which you normally do anyway in order to enable Excel to understand
such DLL-based functions.

Excel Translator™ User Guide Using Excel Translator™ Page 16

The example of such use of external DLLs is given in C:\Program Files\Ultimate Risk
Solutions\Excel Translator\Samples\ExternalDLL folder. The external DLL, which is called
ExternalDLL.dll, was created in C++. The C++ project with the code for creating the DLL is
provided in the ExternalDLL sub-folder of the above folder.

There you can see that ExternalDLL.dll has a single function, ExternalDLL_Calculate,
which takes four parameters. First parameter is a string that indicates whether the volume
or the area of a parallelepiped needs to be calculated. Three other parameters are the side
lengths of the parallelepiped. The function returns either volume or area.

NOTE: You can pass string, numeric, and Boolean parameters to
external DLL functions.

The SimpleModel.xls now calls this DLL function to calculate volume and area. Look at
cells D7 and D8 on the Logic sheet. The formulas in those cells use CalculateValue()
function. That function is declared in the VBA module of SimpleModel.xls as follows:

Public Declare Function CalculateValue Lib _

"C:\Program Files\Ultimate Risk Solutions\URS Translator\
Samples\ExternalDLL\ExternalDLL.dll" _

 Alias "ExternalDLL_Calculate" (ByVal sType As String, _
 ByVal A As Double, ByVal b As Double, ByVal c As Double) As Double

Note that in the above declaration, CalculateValue is used as an alias for the real dll
function ExternalDLL_Calculate.

NOTE: You don’t need to use aliases, call real DLL functions if it’s
more convenient for you.

After you translate SimpleModel.xls, open SimpleModelUser.xls and run its macro. You will
see that the macro correctly calculates the output values while calling translated
SimpleModel.dll, which now uses external DLL function calls.

5.8 Testing Translated DLL

The purpose of DLL testing is to ensure that the Excel spreadsheet and the DLL translated
from that spreadsheet perform the same calculations and return the same output values
given the same input parameters.

The URS DLL Tester utility is accessible from Start→Program Files→Excel Translator.
When you run URS DLL Tester, it will ask you to select the translated DLL you want to
test and the Excel file from which that DLL was created.

Excel Translator™ User Guide Using Excel Translator™ Page 17

After you select those two files, you are ready to test. Simply enter the values of your input
parameters and click the Test DLL button. The URS DLL Tester works as follows:

• It starts Excel
• It populates the input area of the DLL, as well as the input cells of the original

Excel spreadsheet with the same values of input parameters
• It runs DLL calculations and Excel calculations
• It goes through every Excel cell that impacts the output values and compares

the value produced by Excel’s formula with the corresponding value produced
by the DLL

• If there are mismatches between the values calculated by Excel and by the
DLL, they will be displayed on the Discrepancy dialog that EXCEL DLL
Tester shows at the end of each test.

The Discrepancy dialog lists the Excel address of each cell for which the discrepancy was
found, its Excel value, and its corresponding DLL value. If you double-click on the item in
the list-box on the dialog, the DLL Tester will reposition the cursor directly in the cell that
produced the selected discrepancy.

The most likely cause of “discrepancies” is when a new version of the model is compared
to an old DLL, produced by translating an older version of the model. When such a new
spreadsheet is not retranslated, a comparison with the old DLL yields discrepancies.

If there is a discrepancy in one cell, then all cells dependent on that cell will also show
discrepancies. That is why the Discrepancy dialog gives you the option of either viewing
only the cells with the sources of errors or viewing all cells with the errors. You can also
set a watch on specific cells and those cells will be shown in the list-box.

NOTE: You can also test your translated DLL from Model Builder or
from any other external application. With Model Builder, you have an
advantage of being able to run DLL testing in automatic mode whereby the
test will be performed iteratively until the first discrepancy is found.

If you are running your translated model from other VBA application, you can run DLL
testing either at each individual iteration or in automatic mode. Review VBA code in
SimpleModelUser.xls as an example.

At the beginning (see RunModel() function), the path and name for both DLL and Excel
files are declared. Then the DLL object is created and DLL testing enabled:

m_sDll = " C:\Program Files\Ultimate Risk Solutions\Excel Translator

\Samples\VBA\SimpleModel.dll"

Excel Translator™ User Guide Using Excel Translator™ Page 18

m_sXls = " C:\Program Files\Ultimate Risk Solutions\Excel Translator

\Samples\VBA\SimpleModel.xls"
' Create object from translated DLL
Set oDLL = EXCEL_CreateObject(m_sDll)

' Initialize dll tester
Call oDLL.EnableDllTesting(Application, m_sXls)

Then at each iteration (see CalculateOutput() function), the DLL testing can be performed:

' 0 - no testing
' 1 - "usual" mode
' 2 - "auto step-through" mode
bContinue = oDLL.TestDll(1)

If False = bContinue Then Exit Sub

If the parameter passed into the TestDll() function is 0, the function does nothing and
simply returns true, so that the program can continue executing. If the parameter is 1, the
Discrepancy dialog is shown. If the user chooses to continue testing by closing the
Discrepancy dialog, the function returns true. If the user decides to stop testing, the
function returns false.

If the TestDll() function parameter is 2, the program performs DLL testing automatically
and returns true if there are no discrepancies. If, at any iteration, one or more
discrepancies are found, the DLL Tester pauses to display the Discrepancy dialog. Then,
depending on the user’s action – continue testing (by closing the dialog) or stop testing –
the function returns true or false.

At the end of your VBA application (see RunModel() function), you always need to finish
DLL testing and destroy the DLL object created at the beginning:

' stop dll tester
Call oDLL.FinishDllTesting
Set oDLL = Nothing

Excel Translator™ User Guide URS Model Builder and Result Viewer Page 19

6 URS Model Builder and Result Viewer
URS Model Builder is an auxiliary application supplied with Excel Translator™ that makes
working with Excel-translated components easy and convenient. It allows you to build
complicated models using some previously translated models as building blocks. Thus, for
example, when you have built the models for several asset classes, such as bonds and
stocks, you can combine them to model the behavior of a portfolio comprised of such
assets.

Start URS Model Builder, then create new project (File…New Project). A Project contains
Components folder to which you can add Excel-translated components on right click.
When you add an Excel-translated component, you will be prompted to upload its DLL.
You can also specify the path\name of the original Excel file that was compiled to produce
that DLL and enable DLL testing.

NOTE: URS Model Builder quickly runs calculations of one or more
Excel-translated components multiple times, as specified by the number of
iterations. At each iteration, URS Model Builder produces the values of all
input variables, runs calculations of all Excel translated components in a
project, and processes the values of the specified output variables.

Excel-translated component’s input and output variables are displayed on URS Model
Builder’s project tree. The values of input variables can be produced, at each iteration, by
several different means which you can see if you right click on any input variable on a
project tree. The input variable can be:

• Set as Constant
• Simulated Stochastically from a statistical distribution (variety of distributions

are available)
• Read Sequentially from a tab-delimited text file or from an array of values
• Set Equal to Other Variable, whether to the output variable from other

component or to the input variable from any component
• Calculated as Dependent on other variables.

You can build a sophisticated model that will execute fast by creating Excel-translated
components and connecting them together in URS Model Builder by setting input variables
of one component equal to the output variables of other components. Thus you can create a
sophisticated model with nothing else but the models, which you created previously.

Besides specifying how you want to produce the values of the input variables, before you
run your model, you also need to specify how you want to process the values of the output
variables. Right click on any output variable and select Accumulate Statistics, in which

Excel Translator™ User Guide URS Model Builder and Result Viewer Page 20

case the empirical distribution (histogram) for that variable will be produced at the end of
all iterations.

You can also select the Save All Iterations item, in which case each single iteration will
save the corresponding value of that output variable into a binary Results Storage (RST)
file. The name and location of the RST file is specified in Iteration Options (select
Iterations…Options from the main menu) on the Results page.

After you set the Accumulate Statistics and/or Save All Iterations flags on the output
variables of your interest, set the number of iterations in Iteration Options and then run the
model by choosing Iterations…Run from the main menu. At the end of a model’s run, the
empirical distributions (histograms) for all variables marked with the Accumulate Statistics
flag will be produced. The values calculated at each iteration for all variables marked with
the Save All Iterations flag will be saved in the specified RST file.

The RST file can then be viewed with the Result Viewer, an auxiliary application supplied
with URS Model Builder. The Result Viewer can read RST files, produce reports from their
data, copy/paste that data to Excel or other spreadsheet applications or export it to other
files or databases.

The Result Viewer can be invoked either from URS Model Builder by selecting
Iterations…Result Viewer from the main menu or by selecting appropriate item from
Start→Programs→Excel Translator group.

Create new report in the Result Viewer, select the Iteration Table report, find the relevant
RST file and specify which variables you want to list in the iteration table. The Result
Viewer will show the table of values produced in each iteration for each specified variable.

You can copy this table (Edit…Copy Entire Table) and paste it to Excel. You can also export
the table (File…Export) to tab-delimited text (TXT) file, to comma delimited (CSV) file, or to
Microsoft Access (MDB) database.

Excel Translator™ User Guide *URS Statistical Distributions and Math Library* Page 21

7 Using URS Statistical Distribution and Math Library
If you work with statistical distributions, which is often the case in financial and stochastic
models, in addition to Excel’s functions, Excel Translator™ offers a variety of
distributions available from the URS Distribution and Math Library, which you can use in
your Excel model. The URS Distribution and Math Library comes with Excel Translator™
and is available in Excel as URS functions. All URS functions can be found in the User-
Defined section when you select Insert…Function from Excel’s Main Menu or when you
click on the function toolbar.

URS distribution functions include the functions that generate random values from the
distributions and functions that calculate various distribution properties, such as mean,
standard deviation, moments, or distribution percentiles. URS math functions include
random number generation, calculation of lower and upper triangular matrices, and
generation of the sets of correlated standard normal random numbers.

NOTE: Excel models that you can translate with Excel Translator™
and run in fast repeating mode can include stochastic elements.

The complete list of URS functions available for use in Excel with Excel Translator™,
along with the description of each function and its parameters, is presented below.
Distribution formulas are provided in Section 8 of this Guide.

The examples of how to use URS functions in your Excel model or in a VBA macro are
given in the UsingURSFunctionsInExcel.xls and UsingURSFunctionsInVBA.xls files located
in C:\Program Files\Ultimate Risk Solutions\Excel Translator\Samples\URSFunctions folder.
The URS functions are shown on the Output sheet.

Select Tools…Customize from Excel’s Main Menu, then select the Commands tab, and
choose Tools item from the list. Add the Calculate Full button to one of Excel’s toolbars.
Now, when you click the Calculate Full button, you will see different random values
generated in cells I18:I21 of the Output sheet.

URS_DIST_GetCdfPercent

Purpose: Calculates Cdf percent from value X

Parameters:
X - value
SType - text string, which is a distribution type (see list of available

types below)
RParameters - Excel range where you entered distribution parameters
DValueMin - distribution minimum
DValueMax - distribution maximum

Excel Translator™ User Guide *URS Statistical Distributions and Math Library* Page 22

BMassOnMin - optional parameter, if TRUE distribution is truncated (has a

mass point) at minimum, default is FALSE
BMassOnMax - optional parameter, if TRUE distribution is truncated (has a

mass point) at maximum, default is FALSE

URS_DIST_GetCV

Purpose: Calculates coefficient of variation of the distribution

Parameters:
SType - text string, which is a distribution type
RParameters - Excel range where you entered distribution parameters
DValueMin - distribution minimum
DValueMax - distribution maximum
BMassOnMin - optional parameter, if TRUE distribution is truncated (has a

mass point) at minimum, default is FALSE
BMassOnMax - optional parameter, if TRUE distribution is truncated (has a

mass point) at maximum, default is FALSE

URS_DIST_GetDensityValue

Purpose: Calculates Pdf or Pmf function for value X

Parameters:
X - value
SType - text string, which is a distribution type
RParameters - Excel range where you entered distribution parameters
DValueMin - distribution minimum
DValueMax - distribution maximum
BMassOnMin - optional parameter, if TRUE distribution is truncated (has a

mass point) at minimum, default is FALSE
BMassOnMax - optional parameter, if TRUE distribution is truncated (has a

mass point) at maximum, default is FALSE

URS_DIST_GetDeviate

Purpose: Generates random value (deviate) from a distribution

Parameters:
SType - text string, which is a distribution type
RParameters - Excel range where you entered distribution parameters
DValueMin - distribution minimum
DValueMax - distribution maximum
BMassOnMin - optional parameter, if TRUE distribution is truncated (has a

mass point) at minimum, default is FALSE
BMassOnMax - optional parameter, if TRUE distribution is truncated (has a

Excel Translator™ User Guide *URS Statistical Distributions and Math Library* Page 23

mass point) at maximum, default is FALSE

URS_DIST_GetInverseCdf

Purpose: Calculates inverse Cdf from Cdf percent

Parameters:
Percent - Cdf percent
SType - text string, which is a distribution type
RParameters - Excel range where you entered distribution parameters
DValueMin - distribution minimum
DValueMax - distribution maximum
BMassOnMin - optional parameter, if TRUE distribution is truncated (has a

mass point) at minimum, default is FALSE
BMassOnMax - optional parameter, if TRUE distribution is truncated (has a

mass point) at maximum, default is FALSE

URS_DIST_GetMean

Purpose: Calculates distribution mean

Parameters:
SType - text string, which is a distribution type
RParameters - Excel range where you entered distribution parameters
DValueMin - distribution minimum
DValueMax - distribution maximum
BMassOnMin - optional parameter, if TRUE distribution is truncated (has a

mass point) at minimum, default is FALSE
BMassOnMax - optional parameter, if TRUE distribution is truncated (has a

mass point) at maximum, default is FALSE

URS_DIST_GetMoment

Purpose: Calculates specified moment of a distribution

Parameters:
Moment - integer, which is a moment number
SType - text string, which is a distribution type
RParameters - Excel range where you entered distribution parameters
DValueMin - distribution minimum
DValueMax - distribution maximum
BMassOnMin - optional parameter, if TRUE distribution is truncated (has a

mass point) at minimum, default is FALSE
BMassOnMax - optional parameter, if TRUE distribution is truncated (has a

mass point) at maximum, default is FALSE

Excel Translator™ User Guide *URS Statistical Distributions and Math Library* Page 24

URS_DIST_GetStDev

Purpose: Calculates distribution standard deviation

Parameters:
SType - text string, which is a distribution type
RParameters - Excel range where you entered distribution parameters
DValueMin - distribution minimum
DValueMax - distribution maximum
BMassOnMin - optional parameter, if TRUE distribution is truncated (has a

mass point) at minimum, default is FALSE
BMassOnMax - optional parameter, if TRUE distribution is truncated (has a

mass point) at maximum, default is FALSE

URS_DIST_GetVariance

Purpose: Calculates distribution variance

Parameters:
SType - text string, which is a distribution type
RParameters - Excel range where you entered distribution parameters
DValueMin - distribution minimum
DValueMax - distribution maximum
BMassOnMin - optional parameter, if TRUE distribution is truncated (has a

mass point) at minimum, default is FALSE
BMassOnMax - optional parameter, if TRUE distribution is truncated (has a

mass point) at maximum, default is FALSE

URS_MATH_GetRandomNumber

Purpose: Generates random number from 0 to 1.

Parameters: None

URS_DIST_GetDeviateStandardNormal

Purpose: Calculates random value from Standard Normal

distribution.

Parameters: None

Excel Translator™ User Guide *URS Statistical Distributions and Math Library* Page 25

URS_DIST_GetDeviateChiSquare

Purpose: Calculates random value from Chi-Square distribution.

Parameters:
nDegreeOfFreedom - degree of freedom (integer value)

URS_DIST_GetDeviateStudentT

Purpose: Calculates random value from Student-t distribution.

Parameters:
nDegreeOfFreedom - degree of freedom (integer value)

URS_MATH_GetLowerMatrix

Purpose: Calculates lower triangular matrix from correlation matrix
using Choleski decomposition. Used in array formulas.

Parameters:
RCorrelationMatrix - Excel range that contains the correlation matrix. All
diagonal elements in a correlation matrix should equal 1 and symmetrical elements
should be equal. Number of rows should equal number of columns.

URS_MATH_GetUpperMatrix

Purpose: Calculates upper triangular matrix from correlation matrix
using Choleski decomposition. Used in array formulas.

Parameters:
RCorrelationMatrix - Excel range that contains the correlation matrix. All
diagonal elements in a correlation matrix should equal 1 and symmetrical elements
should be equal. Number of rows should equal number of columns.

URS_MATH_GetCorrelatedStNormalDeviates

Purpose: Generates an array of correlated standard normal deviates.
Use in array formulas.

Parameters:
RCorrelationMatrix - Excel range that contains the correlation matrix. All
diagonal elements in a correlation matrix should equal 1 and symmetrical elements
should be equal. Number of rows should equal number of columns.

Excel Translator™ User Guide *URS Statistical Distributions and Math Library* Page 26

URS_MATH_GetCorrelatedDeviates

Purpose: Generates an array of deviates from the distributions you
specify correlated via Normal Copula. Use in array formulas.

Parameters:
RCorrelationMatrix - Excel range that contains the correlation matrix. All
diagonal elements in a correlation matrix should equal 1 and symmetrical elements
should be equal. Number of rows should equal number of columns.

RDistributionParameterMatrix - Excel range that contains the matrix of
distribution parameters. Number of rows in the matrix must be equal to the number of
rows (columns) in the correlation matrix. Rows in distribution parameter matrix should
contain information about the distributions to be correlated in the following order:

• Column 1: Distribution type
• Columns 2 through N: Distribution parameters
• Column N+1: Distribution minimum
• Column N+2: Distribution maximum
• Column N+3 (Optional): Boolean that specifies if there is a mass point

at minimum.
• Column N+4 (Optional): Boolean that specifies if there is a mass point

at maximum.

The number of columns in the matrix depends on the greatest number of parameters in
the distributions to be correlated and on using last optional Booleans.

List of available distribution types is given below:

Discrete distributions -

Bernoulli
Binomial
NegativeBinomial
Poisson

Continuous distributions –

BetaTransformed
Burr
BurrInverse
Chi-Square
Exponential
ExponentialInverse

Excel Translator™ User Guide *URS Statistical Distributions and Math Library* Page 27

Gamma
GammaInverse
GammaTransformed
GammaTransformedInverse
Gumbel
Loglogistic
Lognormal
Normal
Paralogistic
ParalogisticInverse
Pareto
ParetoGeneralized
ParetoInverse
ParetoSimple
StandardNormal
Student-T
Uniform
Weibull
WeibullInverse.

Excel Translator™ User Guide. Statistical Distributions. Page - 28

8. Statistical Distributions of Excel Translator™
The statistical distributions provided by Excel Translator™ are as described in Loss
Models: From Data To Decisions by Stuart A. Klugman, Harry H. Panjer, and Gordon E.
Willmot.

This section provides the Pdf/Pmf and Cdf formulas, as defined in the book, for each
distribution used in Excel Translator™. In addition, for each continuous distribution, the
moments of unlimited distribution and the moments of the distribution truncated from
above are provided, also as given in the Loss Models book.

Excel Translator™ (also known as URS Translator, when packaged with URS flagship
product, The Risk Explorer™) gives model designers the additional flexibility of using
distributions, which can be limited (conditional) from below and from above, and also can
be truncated from below and from above. Limited (conditional) distributions progress
smoothly from a minimum to a maximum value, and truncated distributions have mass
points, either at a minimum, at a maximum, or at both extremes. When you create limited
or truncated distributions, Excel Translator™ automatically adjusts the formulas to reflect
the distribution behavior.

• When you specify the minimum and/or maximum value for the distribution property

page and do not use the mass point parameters, you create a limited distribution.
• If you set BMassOnMin or BMassOnMax parameters to TRUE, you create a truncated

distribution at either the minimum or maximum.
• If you set both BMassOnMin and BMassOnMax parameters to TRUE, you create a

distribution truncated at both ends.

8.1 Continuous Distributions

Beta Transformed

[] ταγ

γτ

θ
θγ

τα
τα

+
+ΓΓ

+Γ
=

)/(1
)/(

)()(
)()(

xx
xxf

γ

γ

θ
θατβ

)/(1
)/(),;,()(

x
xuuxF
+

==

[] αγτγ
τα

γαγτθ
<<−

ΓΓ
−Γ+Γ

=Ε kkkX
k

k ,
)()(

)/()/(

 28

Excel Translator™ User Guide. Statistical Distributions. Page - 29

[] [] τγγαγτβ
τα

γαγτθ
−>−+−+

ΓΓ
−Γ+Γ

=Ε kxFxukkkkxX k
k

k ,)(1);/,/(
)()(

)/()/()^(

mode= 0,1,)
1
1(/1 else>
+
− τγ

αγ
τγθ γ

Burr

() ()
()[] 1

/1

/
+

+
= αγ

γ

θ

θαγ

xx

xxf

()
()γ

α

θ/1
1,1
x

uuxF
+

=−=

[] () ()
() αγγ
α

γαγθ
<<−

Γ
−Γ+Γ

=Ε kkkX
k

k ,//1

()[] () ()
() () γγαγβ
α

γαγθ α −>+−−+
Γ

−Γ+Γ
=Ε kuxukkkkxX k

k
k ,1;/,/1//1^

mode= 0,1,
1

1
/1

else>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
− γ

αγ
γθ

γ

Burr Inverse

() ()
()[] 1

/1

/
+

+
= τγ

γτ

θ

θτγ

xx

xxf

() ()
()γ

γ
τ

θ
θ
/1

/,
x

xuuxF
+

==

[] () ()
() γτγ
τ

γγτθ
<<−

Γ
−Γ+Γ

=Ε kkkX
k

k ,/1/

()[] () ()
() () [] τγγγτβ
τ

γγτθ τ −>−+−+
Γ

−Γ+Γ
=Ε kuxukkkkxX k

k
k ,1;/1,//1/^

mode= 0,1,
1
1

/1

else>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
− τγ

γ
τγθ

γ

Exponential

 29

Excel Translator™ User Guide. Statistical Distributions. Page - 30

()
θ

θ/xexf
−

=

() θ/1 xexF −−=
[] (1+Γ=Ε kX kk θ) , k>-1
[] !kX kk θ=Ε , if k is an integer
[] ()θθ /1^ xexX −−=Ε
()[] () () θθθ //;11^ xkkk exxkkxX −++Γ+Γ=Ε , k>-1

() θθθ //;1! xkk exxkk −++Γ= , k an integer
mode = 0

Exponential Inverse

() 2

/

x
exf

xθθ −

=

() xexF /θ−=
[] (kX kk −Γ=Ε 1θ), k<1
()[] () () ()xkkk exxkGkxX /1/;11^ θθθ −−+−−Γ=Ε , all k

mode= 2/θ

Gamma

() ()
()α

θ θα

Γ
=

−

x
exxf

x //

() ()θα /; xxF Γ=

[] ()
()α
αθ

Γ
+Γ

=Ε
kX

k
k , k>-α

[] () ααθ L1−+=Ε kX kk , if k is an integer

()[] ()
() () ()[]θαθα
α
αθ /;1/;^ xxxkkxX k

k
k Γ−++Γ

Γ
+Γ

=Ε , k> α−

 () () () ()[]θαθαθααα /;1/;11 xxxkk kk Γ−++Γ−++= L , k an integer
mode= (),1−αθ 1>α , else 0

Gamma Inverse

 30

Excel Translator™ User Guide. Statistical Distributions. Page - 31

() ()
()α

θ θα

Γ
=

−

x
exxf

x//

() ()xxF /;1 θαΓ−=

[] ()
()α
αθ

Γ
−Γ

=Ε
kX

k
k , k<α

[] () ()k
X

k
k

−−
=Ε

αα
θ
L1

, if k is an integer

()[] ()
() ()[] ()

()
() () ()xxxkGk

xxxkkxX

k
k

k
k

k

/;/;

/;/;1^

θαθα
α
αθ

θαθα
α
αθ

Γ+−
Γ

−Γ
=

Γ+−Γ−
Γ

−Γ
=Ε

, all k

() () () (xxxkG
k

k
k

/;/;
1

θαθα
αα

θ
Γ+−

−−
=

L
) , k an integer

mode= ()1/ +αθ

Gamma Transformed

() () ()τ
α

θ
α

τ /, xu
x

euxf
u

=
Γ

=
−

() ()uxF ;αΓ=

[] ()
() ατ
α

ταθ
−>

Γ
+Γ

=Ε kkX
k

k ,/

()[] ()
() () ()[] ατατα
α

ταθ
−>Γ−++Γ

Γ
+Γ

=Ε kuxukkxX k
k

k ,;1;//^

mode= 0,1,1 /1

else>⎟
⎠
⎞

⎜
⎝
⎛ − ατ

τ
ατθ

τ

Gamma Transformed Inverse

() () ()τ
α

θ
α

τ xu
x

euxf
u

/, =
Γ

=
−

() ()uxF ;1 αΓ−=

[] ()
() ατ
α

ταθ
<

Γ
−Γ

=Ε kkX
k

k ,/

 31

Excel Translator™ User Guide. Statistical Distributions. Page - 32

()[] ()
() ()[] ()

()
() () ()uxukGk

uxukkxX

k
k

k
k

k

;;//

;;/1/^

ατα
α

ταθ

ατα
α

ταθ

Γ+−
Γ
−Γ

=

Γ+−Γ−
Γ
−Γ

=Ε

mode=
τ

ατ
τθ

/1

1
⎟
⎠
⎞

⎜
⎝
⎛

+

Loglogistic

() ()
()[]2/1

/
γ

γ

θ

θγ

xx

xxf
+

=

() ()
()γ

γ

θ
θ
/1

/,
x

xuuxF
+

==

[] () () γγγγθ <<−−Γ+Γ=Ε kkkX kk ,/1/1
()[] () () () () γγγβγγθ −>−+−+−Γ+Γ=Ε kuxukkkkxX kkk ,1;/1,/1/1/1^

mode= 0,1,
1
1

/1

else>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
− γ

γ
γθ

γ

Lognormal

() () () ()
σ

μσφ
πσ

−
==−=

xzxzz
x

xf log,/2/exp
2

1 2

() ()zxF Φ=
[] ()2/exp 22σμ kkX k +=Ε

()[] () ()[]xFxkxkkxX kk −+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
Φ+=Ε 1log2/exp^

2
22

σ
σμσμ

mode= ()2exp σμ −

Normal

()

() 2

2

2

2
1 σ

μ

σπ

−
−

=
x

exf

()

⎟
⎠
⎞

⎜
⎝
⎛ −

Φ=
σ
μxxF

 32

Excel Translator™ User Guide. Statistical Distributions. Page - 33

Paralogistic (this is a Burr distribution with αγ =)

() ()
()[] 1

2

/1

/
+

+
= αα

α

θ

θα

xx

xxf

()
()α

α

θ/1
1,1
x

uuxF
+

=−=

[] () ()
()

2,//1 αα
α

αααθ
<<−

Γ
−Γ+Γ

=Ε kkkX
k

k

()[] () ()
() () ααααβ
α

αααθ α −>+−−+
Γ

−Γ+Γ
=Ε kuxukkkkxX k

k
k ,1;/,/1//1^

mode= 0,1,
1

1 /1

2 else>⎟
⎠
⎞

⎜
⎝
⎛

+
− α

α
αθ

α

Paralogistic Inverse (this is an Inverse Burr distribution with τγ =)

() ()
()[] 1

2

/1

/
2

+
+

= ττ

τ

θ

θτ

xx

xxf

() ()
()τ

τ
τ

θ
θ
/1

/,
x

xuuxF
+

==

[] () ()
() ττ
τ

τττθ
<<−

Γ
−Γ+Γ

=Ε kkkX
k

k 2,/1/

()[] () ()
() () [] 2,1;/1,//1/^ ττττβ
τ

τττθ τ −>−+−+
Γ

−Γ+Γ
=Ε kuxukkkkxX k

k
k

mode= () 0,1,1 /1 else>− ττθ τ

Pareto

()
() 1++

= α

α

θ
αθ

x
xf

()
α

θ
θ

⎟
⎠
⎞

⎜
⎝
⎛

+
−=

x
xF 1

[] () ()
() α
α

αθ
<<−

Γ
−Γ+Γ

=Ε kkkX
k

k 1,1

 33

Excel Translator™ User Guide. Statistical Distributions. Page - 34

[] () () ,1
!

k
kX

k
k

−−
=Ε

αα
θ
L

if k is an integer

[] 1,1
1

^
1

≠
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

+
−

−
=Ε

−

α
θ

θ
α
θ α

x
xX

[] 1,log^ =⎟
⎠
⎞

⎜
⎝
⎛

+
−=Ε α

θ
θθ

x
xX

()[] () ()
() ()[] kall

x
xxxkkkkxX k

k
k ,/;,11^

α

θ
θθαβ

α
αθ

⎟
⎠
⎞

⎜
⎝
⎛

+
++−+

Γ
−Γ+Γ

=Ε

mode = 0

Pareto Generalized

()
() () () τα

τα

θ
θ

τα
τα

+

−

+
⋅

ΓΓ
+Γ

=
x

xxf
1

)(

() ()
θ

ατβ
+

==
x

xuuxF ,;,

[] () ()
() () ατ

τα
ατθ

<<−
ΓΓ

−Γ+Γ
=Ε kkkX

k
k ,

[] () ()
() () ,

1
11

k
kX

k
k

−−
−++

=Ε
αα
τττθ

L

L if k is an integer

()[] () ()
() () () ()[] τατβ

τα
ατθ

−>−+−+
ΓΓ

−Γ+Γ
=Ε kxFxukkkkxX k

k
k ,1;,^

mode= 0,1,
1
1 else>

+
− τ

α
τθ

Pareto Inverse

()
() 1

1

+

−

+
= τ

τ

θ
τθ
x

xxf

()
τ

θ
⎟
⎠
⎞

⎜
⎝
⎛

+
=

x
xxF

[] () ()
() 1,1

<<−
Γ

−Γ+Γ
=Ε kkkX

k
k τ

τ
τθ

[] ()
() () ,1

!
k

kX
k

k

+−
−

=Ε
ττ

θ
L

if k is a negative integer

()[] ()
()

τ
θ

τθ
θ τ

τ −>
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

+
−+−=Ε ∫

+
−−+ k

x
xxdyyyxX

xx
kkkkk ,11^

/

0

1

 34

Excel Translator™ User Guide. Statistical Distributions. Page - 35

mode= 0,1,
2

1 else>
− ττθ

Pareto Simple [a, b]

()

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−

= + αα

α

α

b
ax

axf
1

1
1

() α

α

⎟
⎠
⎞

⎜
⎝
⎛−

⎟
⎠
⎞

⎜
⎝
⎛−

=

b
a
x
a

xF
1

1

() () α
αα

α

α
α

⎟
⎠
⎞

⎜
⎝
⎛−

−
−
⋅

=Ε −−

b
a

ab
k

aX kkk

1

1

Uniform

()
⎪⎩

⎪
⎨
⎧ ≤≤

−=
otherwise0

,1 bxa
abxf

()
⎪
⎩

⎪
⎨

⎧

>
≤≤

<

−
−

=
bx

bxa
ax

ab
axxF

,
,
,

1

0
,

() ()()abk
abX

kk
k

−+
−

=Ε
++

1

11

Weibull

() () ()

x
exxf

x τθτθτ // −

=

() ()τθ/1 xexF −−=
[] ()τθ /1 kX kk +Γ=Ε , k> τ−

()[] () ()[] ()τθτθττθ //;/1/1^ xkkk exxkkxX −++Γ+Γ=Ε , k> τ−

mode=
τ

τ
τθ

/11
⎟
⎠
⎞

⎜
⎝
⎛ − , 1>τ , else 0

Weibull Inverse

 35

Excel Translator™ User Guide. Statistical Distributions. Page - 36

() () ()

x
exxf

x τθτθτ // −

=

() ()τθ xexF /−=
[] (τθ /1 kX kk −Γ=Ε) , k<τ

()[] () ()]} ()[][{ τθτθττθ xkkk exxkkxX /1/;/11/1^ −−+−Γ−−Γ=Ε , all k

() ()[] ()[]τθτθττθ xkk exxkGk /1/;/1/1 −−+−−Γ=

mode=
τ

τ
τθ

/1

1
⎟
⎠
⎞

⎜
⎝
⎛

+

Many of the above distributions use Incomplete Beta and Incomplete Gamma functions.
The formulas for these functions are given below:

Incomplete beta

10,0,0,)1(
)()(
)(),,(

0

11 <<>>−
ΓΓ
+Γ

= ∫ −− xbadttt
ba
baxba

x
baβ

Incomplete gamma

∫ >>
Γ

=Γ −−
x

t xdtetx
0

1 0,0,
)(

1);(α
α

α α

∫
∞

−− >=Γ
0

1 0,)(αα α dtet t

when a the integral does not exist. In that case, define 0≤

∫
∞

−− >=Γ
x

t xdtetxG 0,);()(1ααα

8.2 Discrete Distributions

In URS Translator the parameters used for discrete distributions, such as Poisson,
Binomial, and Negative Binomial are always Mean and Variance-to-Mean ratio (for
Poisson distributions, only the Mean parameter is relevant). The conversion formulas from
Klugman’s parameters to the Mean and Variance-to-Mean ratio are provided.

Poisson

 36

Excel Translator™ User Guide. Statistical Distributions. Page - 37

λλ === − baep ,0,0

!k
ep

k

k
λλ−

=

[] [] λλ =Ν=ΝΕ Var,

Mean = λ

Binomial

())1/()1(),1/(,10 qqmbqqaqp m −+=−−=−= , 0 < q < 1, m an integer

() mkqqp kmk
m

k
k ,,1,0,1 K=−⎟

⎠
⎞

⎜
⎝
⎛= −

[] [] ()qmqVarmq −=Ν=ΝΕ 1,

Mean = mq, Variance-to-Mean = (1-q)

Negative Binomial

rp −+=)1(0 β ,)1/(ββ +=a ,)1/()1(ββ +−= rb

kr

k

k k
krrrp ++
−++

=
)1(!

)1()1(
β

βL

βrNE =][,)1(][ββ += rNVar

Mean = βr , Variance-to-Mean =)1(β+

 37

	1 About Excel Translator™
	1.1. Benefits

	2 System Requirements
	Minimum Configuration

	3 Installation
	4 Excel Translator™ Concepts
	5 Using Excel Translator ™
	5.1 Defining Input and Output Variables
	5.2 Using VBA Macros in Excel Models
	5.3 Using External Add-Ins in Excel Models
	5.4 Translating Excel Spreadsheets
	5.5 Using Translated DLL in a VBA Macro – Examples and Sample Files
	5.6 Using Translated DLL in C++ Program – Examples and Sample Files
	5.7 Using External DLL Function Calls in Spreadsheet Models
	5.8 Testing Translated DLL

	6 URS Model Builder and Result Viewer
	7 Using URS Statistical Distribution and Math Library
	8. Statistical Distributions of Excel Translator™
	8.1 Continuous Distributions
	8.2 Discrete Distributions

